Computing Real Logarithm of a Real Matrix

Nagwa Sherif and Ehab Morsy
Department of Mathematics, Faculty of Science
Suez Canal University, Ismailia 22541, Egypt

Abstract

In this paper we will be interested in characterizing and computing for a nonsingular real matrix $A \in \mathbb{R}^{n \times n}$ a real matrix $X \in \mathbb{R}^{n \times n}$ that satisfies $e^X = A$, that is, a logarithm of A. Firstly, we investigate the conditions under which such logarithm exists, unique, polynomial in A, or belongs to a particular class of matrices. Secondly, real Schur decomposition will be used to compute X.

Mathematics Subject Classification: 15A24

Keywords: Matrix functions, matrix logarithms, nonsingular matrices

1 Introduction

Logarithms of matrices arise in various contexts. For example [1, 3, 8], for a physical system governed by a linear differential equation of the form

$$\frac{dy}{dt} = Xy,$$

where X is n-by-n unknown matrix. From observations of the state vector $y(t)$, if $y(0) = y_0$ then we know that

$$y(t) = e^{tX}y_0.$$

By taking n observations at $t = 1$ for n initial states consisting of the columns of the identity matrix, we obtain the matrix $A = e^X$. Under certain conditions on A, we can then solve for X, that is $X = \log A$. This raises the question of how to compute a logarithm of a matrix. We show that $S(A)$, the solution set of this matrix equation, is nonempty if and only if A is nonsingular.

In this paper we concerned with the real solvability of the matrix equation $e^X = A$ in case of real matrix A. Not every nonsingular real matrix have a real logarithm as the following example illustrates.

\[\text{1ehabb_2000@yahoo.com}\]
Example 1 Let \(A = \text{diag}(1, -1) \). Then any logarithm of \(A \) is given by
\[
X = U \text{diag}(\log(1), \log(-1))U^{-1} = U \text{diag}(2\pi ij_1, i\pi(2j_2 + 1))U^{-1}
\]
where \(j_1, j_2 \in \mathbb{Z} \) and \(U \) is any nonsingular matrix commuting with \(A \). All these logarithms are matrices with noncomplex conjugate eigenvalues. Hence it can not be similar to a real matrix and no real logarithm of \(A \) can be obtained.

The existence of a real logarithm of a real matrix is discussed in Section 2. In Section 2, we also characterize such logarithm, that is, set the conditions for which \(X \) is polynomial in \(A \), symmetric, positive definite, or orthogonal.

The computation of a real logarithm \(X \) of a real matrix \(A \) arises in many system identification, one of which is the mathematical modeling of dynamic systems \([4]\). In Section 3, we propose a technique to compute such \(X \) based on the real Schur decomposition.

2 Characterization of a real logarithm

In the following theorem we give a set of conditions on the matrix \(A \) that guarantees the existence of a real logarithm of \(A \). We start by a lemma which constructs a real logarithm of a particular 2-by-2 matrices.

Lemma 2 The 2-by-2 real matrices of the form
\[
A_1 = \begin{bmatrix} -\lambda & 0 \\ 0 & -\lambda \end{bmatrix}, \quad \lambda > 0 \quad \text{and} \quad A_2 = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}, \quad b \neq 0
\]
have real logarithms given by
\[
X_1 = \begin{bmatrix} \log\lambda & \pi \\ -\pi & \log\lambda \end{bmatrix} \quad \text{and} \quad X_2 = \begin{bmatrix} \theta & \mu \\ -\mu & \theta \end{bmatrix},
\]
respectively, where \(e^{\theta \pm i\mu} = a \pm ib \).

Proof. To prove this lemma, it is enough to show that \(e^{X_1} = A_1 \) and \(e^{X_2} = A_2 \). For the matrix \(X_1 \), there exists a nonsingular matrix \(V \) such that
\[
e^{X_1} = e^{V \text{diag}(\log\lambda + i\pi, \log\lambda - i\pi)V^{-1}} = V(-\lambda I)V^{-1} = -\lambda I = A_1.
\]
For \(X_2 \), it is clear that \(X_2 \) is a normal matrix, and since \(A_2 \) and \(X_2 \) are diagonalizable and commuting, they are simultaneously diagonalizable \([7]\). Then
\[
e^{X_2} = e^{U \text{diag}(\theta + i\mu, \theta - i\mu)U^{-1}} = U \text{diag}(a + ib, a - ib)U^{-1} = A_2.
\]
Next we set up a sufficient and necessary condition for the existence of a real logarithm X of a real matrix $A \in \mathbb{R}^{n \times n}$. A proof of the following theorem can be found in Culver [5], and Ulig [6], however the proof we provide is different, it is based on the usage of real Jordan canonical form and the previous lemma.

Theorem 3 Let $A \in \mathbb{R}^{n \times n}$ be a real matrix. Then there exists a real logarithm X of a real matrix A if and only if A is nonsingular and each Jordan block of A belonging to negative eigenvalue occurs an even number of times.

Proof. Let X be a real logarithm of A, that is, $e^X = A$. By using [7, Th 3.4.5] each complex Jordan block (if exists) of any size occur in the Jordan canonical form of a real matrix in conjugate pairs. Hence we may suppose that the Jordan canonical form of X is

$$J_X = \text{diag}(J_{m_1}(x_1), \ldots, J_{m_r}(x_r), B_{2m_{r+1}}, \ldots, B_{2m_p}),$$

where x_1, \ldots, x_r are real, x_{r+1}, \ldots, x_p are complex, and x_1, x_2, \ldots, x_p are not necessarily distinct and $B_{2m_s} = \text{diag}(J_{m_s}(x_s), J_{m_s}(\overline{x_s}))$. The Jordan canonical form J_A of $A = e^X$ has the form

$$J_A = \text{diag}(J_{m_1}(e^{x_1}), \ldots, J_{m_r}(e^{x_r}), B_{2m_{r+1}}, \ldots, B_{2m_p}),$$

where $B_{2m_s}' = \text{diag}(J_{m_s}(e^{x_s}), J_{m_s}(e^{\overline{x_s}}))$, and \overline{x} denotes the complex conjugate of x. Clearly, $e^{x_k} \neq 0$ for any $x_k \in C$, then A must be nonsingular. Moreover, $e^{x_k} < 0$ only if $\text{Im}(x_k) \neq 0$, in which case $e^{x_k} = e^{\overline{x_k}}$. Thus negative eigenvalues of A must be associated with Jordan blocks which occur in pairs.

Conversely, let $A \in \mathbb{R}^{n \times n}$ satisfy the conditions in the theorem. From the real Jordan canonical form we have

$$A = S \text{diag}(J_{m_1}(\lambda_1), \ldots, J_{m_q}(\lambda_q), J_{2m_{q+1}}(\lambda_{q+1}), \ldots, J_{2m_p}(\lambda_p))S^{-1},$$

where S is a real n-by-n nonsingular matrix, $\lambda_1, \ldots, \lambda_q$ are positive and $\lambda_{q+1}, \ldots, \lambda_p$ are either negative or complex eigenvalues of A that are not necessarily distinct. It is easy to check that the Jordan canonical form of $\log^{(j)} J_{m_k}(\lambda_k)$ is given by

$$\log^{(j)} J_{m_k}(\lambda_k) = \begin{bmatrix} \log^{(j)} \lambda_k & 1/\lambda_k & -1/2\lambda_k^2 & \cdots & (-1)^{m_k-2}\lambda_k^{m_k-2} \\ 0 & \log^{(j)} \lambda_k & 1/\lambda_k & \cdots & (-1)^{m_k-1}\lambda_k^{m_k-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1/\lambda_k \\ 0 & 0 & 0 & \cdots & \log^{(j)} \lambda_k \end{bmatrix}$$
where \(\log^{(j)} z \) is a branch of \(\log z \) defined by

\[
\log^{(j)} z = \text{Log} z + 2\pi ij, \quad j = 0, \pm 1, \ldots.
\]

As for \(k = q + 1, \ldots, p \), \(J_{2m_k}(\lambda_k) \) has the form

\[
J_{2m_k} = \begin{bmatrix}
L_k & I & 0 & \cdots & 0 \\
0 & L_k & I & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & I \\
0 & 0 & 0 & \cdots & L_k
\end{bmatrix},
\]

where \(L_k = \begin{bmatrix} a_k & b_k \\ -b_k & a_k \end{bmatrix} \) corresponding to either complex conjugate eigenvalues \(\lambda = a_k + ib_k \) and \(\overline{\lambda} = a_k - ib_k \), \(b_k \neq 0 \), each with multiplicity \(m_k \), or to a pair of negative eigenvalues, that is, \(a_k < 0 \) and \(b_k = 0 \). We can use the integration definition to find \(\log^{(j)} J_{2m_k}(\lambda_k) \) for a certain branch of \(\log z \). Namely,

\[
\log^{(j)} J_{2m_k}(\lambda_k) = \frac{1}{2\pi i} \int_{\Gamma} (\log^{(j)} z) (zI - J_{2m_k}(\lambda_k))^{-1} dz,
\]

where \(\Gamma \) encloses the eigenvalues \(\lambda_k, \overline{\lambda_k} \) of \(J_{2m_k}(\lambda_k) \). The inverse \((zI - J_{2m_k}(\lambda_k))^{-1} \) can be shown to take the general form

\[
(zI - L_k)^{-1} \quad (zI - L_k)^{-2} \quad (zI - L_k)^{-3} \quad \cdots \quad (zI - L_k)^{-m_k} \\
0 \quad (zI - L_k)^{-1} \quad (zI - L_k)^{-2} \quad \cdots \quad (zI - L_k)^{-m_k+1} \\
\vdots \quad \vdots \quad \vdots \quad \ddots \quad \vdots \\
0 \quad 0 \quad 0 \quad \cdots \quad (zI - L_k)^{-1}
\]

Substituting (6) in (5) and integrating along \(\Gamma \), we have

\[
\log^{(j)} J_{2m_k}(\lambda_k) = \begin{bmatrix}
\log^{(j)} L_k & L_k^{-1} & -\frac{1}{2}(L_k^{-1})^2 & \cdots & \frac{(-1)^{m_k-2}(L_k^{-1})^{m_k-1}}{m_k-2} \\
0 & \log^{(j)} L_k & L_k^{-1} & \cdots & \frac{(-1)^{m_k-3}(L_k^{-1})^{m_k-2}}{m_k-2} \\
\vdots & \vdots & \ddots & \vdots & \ddots \\
0 & 0 & 0 & \cdots & L_k^{-1} \\
0 & 0 & 0 & \cdots & \log^{(j)} L_k
\end{bmatrix},
\]

where by using the previous lemma, \(L_k \) has a real logarithm of the form

\[
\log^{(j)} L_k = \begin{bmatrix} \theta_k & \mu_k \\ -\mu_k & \theta_k \end{bmatrix}, \quad \log^{(j)} (a_k \pm ib_k) = \theta_k \pm i\mu_k.
\]
Now set
\[X = S \text{diag}(\log^{(j_1)}(J_{m_1}(\lambda_1)), \ldots, \log^{(j_q)}(J_{m_q}(\lambda_q)), \log^{(j_{q+1})}(J_{2m_q+1}(\lambda_{q+1})), \ldots, \log^{(j_p)}(J_{2m_p}(\lambda_p)))S^{-1} \]

where for \(k = 1, 2, \ldots, q \), each \(\log^{(j_k)}(J_{m_k}(\lambda_k)) \) is defined by equation (4) and \(\log^{(j_k)}(J_{2m_k}(\lambda_k)) \) is given by (7) for all \(k = q + 1, \ldots, p \). Clearly if we take the logarithms of the Jordan blocks in these forms with particular choice of \(j \) in (4) we can get a real logarithm of \(A \). □

Also, a characterization of the uniqueness of the real logarithm in terms of the spectrum of \(A, \sigma(A) \), is given in the next theorem; Culver [5].

Theorem 4 Let \(A \in \mathbb{R}^{n \times n} \). Then there exists a unique real logarithm \(X \) of \(A \) if and only if \(A \) is nonderogatory and all the eigenvalues of \(A \) are positive real, that is, if all the eigenvalues of \(A \) are positive and no Jordan blocks of \(A \) belonging to the same eigenvalue appear more than once.

Now we deal with the real polynomial solvability of \(e^X = A \), that is, the existence of polynomial \(p(z) \) such that \(X = p(A) \) and \(e^X = A \). The following theorem establishes the conditions for real logarithm \(X \) of \(A \) to be polynomial in \(A \).

Theorem 5 Let \(A \in \mathbb{R}^{n \times n} \), be nonsingular matrix with Jordan canonical form
\[A = S \text{diag}(J_{m_1}(\lambda_1), J_{m_2}(\lambda_2), \ldots, J_{m_p}(\lambda_p))S^{-1} \]

then \(X \in S(A) \) is polynomial in \(A \) if and only if the same value of the scalar logarithm is used for the same eigenvalue of \(A \), that is, if \(e^{x_k} = \lambda_k \) for every \(k = 1, 2, \ldots, p \), then \(\lambda_i = \lambda_j \) implies that \(x_i = x_j \) for all \(1 \leq i, j \leq p \).

From the previous theorem we conclude that if \(A \in \mathbb{R}^{n \times n} \) has any negative eigenvalues, no real solution of \(e^X = A \) can be polynomial in \(A \).

Suppose that \(A \) is a real \(n \)-by-\(n \) matrix, next we give the additional conditions on \(A \) for which its real logarithm is real normal, symmetric, skew symmetric, positive (semi) positive or orthogonal logarithm. We start by the following lemma on which our results are based.

Lemma 6 Let \(A \in \mathbb{R}^{n \times n} \) be a nonsingular matrix, and the negative eigenvalues of \(A \), if exist, occur an even number of times, then \(A \) has a real normal logarithm if and only if \(A \) is normal.

Proof. Suppose that there exists a real normal logarithm \(X \) of a real matrix \(A \). Then there exists a real orthogonal matrix \(Q \in \mathbb{R}^{n \times n} \) such that
\[X = Q \text{diag}(D_1, \ldots, D_s, D_{s+1}, \ldots, D_p)Q^T \]
where D_j is 1-by-1 real matrix for all $j = 1, 2, \ldots, s$ and D_j is 2-by-2 real matrix for all $j = s + 1, \ldots, p$, each of them have the form

$$D_j = \begin{bmatrix} a_j & b_j \\ -b_j & a_j \end{bmatrix}$$

corresponding to the complex conjugate eigenvalues $x_j = a_j + ib_j$ and $\bar{x}_j = a_j - ib_j$. Since $e^X = A$, then

$$A = Q\text{diag}(e^{D_1}, \ldots, e^{D_s}, e^{D_{s+1}}, \ldots, e^{D_p})Q^T$$

Clearly, D_j and D_j^T are commuting for all $j = 1, 2, \ldots, p$. It follows that

$$e^{D_j}e^{D_j^T} = e^{D_j + D_j^T}, \quad \text{for all } j = 1, 2, \ldots, p$$

then $AA^T = A^TA$, that is, A is normal.

Conversely, consider that A is normal matrix. Then there exists a real orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that

$$A = Q\text{diag}(D_1, \ldots, D_s, D_{s+1}, \ldots, D_p)Q^T$$

where D_j is a positive number for $j = 1, \ldots, s$, and for $j = s + 1, \ldots p$, D_j is 2-by-2 matrix of the form

$$\begin{bmatrix} a_j & b_j \\ -b_j & a_j \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$$

corresponding to a complex conjugate eigenvalues $a_j + ib_j$ and $a_j - ib_j$, or to a pair of negative eigenvalues, that is, $\alpha < 0$. Then by using Lemma 1 we can construct a real logarithm X of A. ■

In the previous lemma, the nonsingular real normal matrix A has a real normal logarithm X with prescribed spectrum $\sigma(X) \subset K$, $K \subset C$ if and only if the scalar equation $e^x = \lambda$ has a solution in K for every $\lambda \in \sigma(A)$.

Theorem 7 Let $A \in \mathbb{R}^{n \times n}$, be nonsingular real matrix, that has a real logarithm, that is, each Jordan block of A belonging to a negative eigenvalue occurs an even number of times. Then

(a) There exists a symmetric logarithm of A if and only if A is positive definite. This logarithm is unique.

(b) There exists a skew-symmetric logarithm of A if and only if A is orthogonal.

(c) There exists a real positive definite logarithm (positive semidefinite) of A if and only if $A - I > 0$ ($A - I \geq 0$).
(d) There exists an orthogonal logarithm of A if and only if A is normal and for every $\lambda \in \sigma(A)$, we have $|\log \lambda| = 1$, that is, for every $\lambda = a + ib \in \sigma(A)$, we have

$$(\log \sqrt{a^2 + b^2})^2 + (\tan^{-1}\frac{b}{a})^2 = 1$$

Proof. (a) The proof of this assertion follows due to the obvious fact that the scalar equation $e^x = \lambda$ has a unique real solution if and only if $\lambda > 0$. Hence the matrix equation $e^X = A$ has a symmetric solution if and only if A is positive definite.

(b) Similarly, the scalar equation $e^x = \lambda$ has a solution belongs to $i\mathbb{R}$ if and only if $|\lambda| = 1$. Then the matrix equation $e^X = A$ has a skew symmetric solution if and only if A is orthogonal.

(c) The logarithm X of A is positive definite (semidefinite) if and only if all the solutions of the scalar equation $e^x = \lambda$ are positive (nonnegative). Namely X is positive definite (semidefinite) if and only if A is a real normal and $\lambda > 1 (\lambda \geq 1)$ for all $\lambda \in \sigma(A)$.

(d) Since all the solutions of the scalar equation $e^x = \lambda$ lie on the unit circle if and only if $|\log \lambda| = 1$, therefore the matrix equation $e^X = A$ has an orthogonal solution if and only if A is real normal and $|\log \lambda| = 1$ for all $\lambda \in \sigma(A)$. ■

3 Computation of a real logarithm X

In this section we study the problem of computing a real logarithm of a real matrix. Our main tool for such computation is the real Schur decomposition of the real matrix A.

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular real matrix with no negative eigenvalues, then there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$, such that

$$A = QTQ^T = Q \begin{bmatrix} T_{11} & T_{12} & T_{13} & \cdots & T_{1m} \\ 0 & T_{22} & T_{23} & \cdots & T_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & T_{mm} \end{bmatrix} Q^T. \quad (8)$$

Here each block T_{ii} is either 1-by-1 or 2-by-2 with complex conjugate eigenvalues λ_i and $\overline{\lambda}_i$, $\lambda_i \neq \overline{\lambda}_i$. Since A and T are similar, we have

$$\log A = Q \log T Q^T,$$

so that $\log A$ is real if and only if $\log T$ is real. Hence we need an algorithm for computing a real logarithm of the upper triangular block matrix T. If we suppose that $F = \log T = (F_{ij})$, we look for those F which are functions of T,

[Note: The provided text is fragmented and contains mathematical expressions that require proper formatting and notation to be read accurately. The context suggests a discussion on computing the logarithm of a real matrix, focusing on conditions for the existence of an orthogonal logarithm and the computation of such logarithms using the real Schur decomposition.]
and hence F will inherit the upper triangular block structure from T. First we compute

$$F_{ii} = \log T_{ii}, \quad \text{for all } i = 1, 2, \ldots, m.$$

Once the diagonal blocks of F are known, the blocks in the strict upper triangular of F can be derived from the commutativity result $FT = TF$. Indeed by computing (i, j) entries in this equation, we get

$$\sum_{k=i}^{j} F_{ik} T_{kj} = \sum_{k=i}^{j} T_{ik} F_{kj}, \quad j > i$$

and thus, if $\sigma(T_{ii}) \cap \sigma(T_{jj}) = \emptyset$, $i \neq j$, we obtain an equation with unique solution [2], namely

$$F_{ij} T_{jj} - T_{ii} F_{ij} = T_{ij} F_{jj} - F_{ii} T_{ij} + \sum_{k=i+1}^{j-1} (T_{ik} F_{kj} - F_{ik} T_{kj}), \quad (9)$$

where F_{ij} are computed one superdiagonal at a time. This Sylvester equation results in a linear system of order 1, 2 or 4 that can be solved using standard methods.

From this algorithm for constructing F from its diagonal blocks we conclude that F is real, and consequently $\log A$ is real if and only if each of the blocks F_{ii} is real. Next we discuss the real logarithms $\log T_{ii}$ of 2-by-2 a real matrix with complex conjugate eigenvalues.

Lemma 8 Let $B = (b_{ij}) \in \mathbb{R}^{2 \times 2}$ with complex conjugate eigenvalues $\lambda = a + ib$ and $\overline{\lambda} = a - ib$, $b \neq 0$. Then B has a countable real logarithms.

Proof. Since B has complex conjugate eigenvalues λ and $\overline{\lambda}$, $\lambda \neq \overline{\lambda}$, and $\lambda = a + ib$, then there exists a nonsingular matrix $V \in \mathbb{C}^{2 \times 2}$, such that

$$B = V \text{diag}(\lambda, \overline{\lambda}) V^{-1}.$$

Then B can be written in the form $B = aI + ibKV^{-1} = aI + bW$, where $W = iVKV^{-1}$ and $K = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Clearly W is a real matrix. Thus any logarithm X of B is given by

$$X = V \text{diag}((\log(j_1) \lambda, \log(j_2) \overline{\lambda})) V^{-1}$$

$$= V \text{diag}(\theta + i\mu + i2\pi j_1, \theta - i\mu + i2\pi j_2) V^{-1}$$

where $\theta = \log |\lambda|$, $\mu = \text{Arg}\lambda$ and $\text{Arg}\overline{\lambda} = -\text{Arg}\lambda$. Then the set of all logarithms of a 2-by-2 real matrix (with complex conjugate eigenvalues) is a countable set, each logarithm is given by

$$X = \theta I + \mu W + VE V^{-1} \quad (10)$$
where $E = i2\pi \text{diag}(j_1, j_2)$. In fact equation (10) gives all the possible solutions of $e^X = B$. The logarithm in equation (10) is real if and only if VEV^{-1} is a real matrix, that is, if and only if $j_1 = -j_2$. In this case $VEV^{-1} = i2\pi j_1 VKV^{-1} = 2\pi j_1 W$. Then any real logarithm X of B has the form

$$X = \theta I + (\mu + 2\pi j_1)W,$$

where $W = \frac{1}{i}(B - aI)$. And indeed once θ and μ are known we have a countable set of real logarithms. \blacksquare

The set of real logarithms of a real 2-by-2 matrix (with complex conjugate eigenvalues) can also obtained in an alternative approach by using Lagrange interpolation as follows.

Let $B = (b_{ij}) \in R^{2 \times 2}$ with complex conjugate eigenvalues $\lambda = a + ib$ and $\overline{\lambda} = a - ib$, then there exists a polynomial $r(z)$ of the first degree given by

$$r(z) = (\log^{(j_1)} \lambda) \frac{(z - \overline{\lambda})}{(\lambda - \overline{\lambda})} + (\log^{(j_2)} \overline{\lambda}) \frac{(z - \lambda)}{(\overline{\lambda} - \lambda)}$$

where $\log^{(j)} z$ is a branch of $\log z$. Hence we can define a logarithm X of B as

$$X = r(B) = (\log^{(j_1)} \lambda) \frac{(B - \overline{\lambda}I)}{2ib} + (\log^{(j_2)} \overline{\lambda}) \frac{(B - \lambda I)}{-2ib}$$

$$= \frac{i}{2b} \left[(\log^{(j_2)} \overline{\lambda})(B - \lambda I) - (\log^{(j_1)} \lambda)(B - \overline{\lambda}I)\right]$$

$$= \frac{i}{2b} \left[(\log \overline{\lambda} + i2\pi j_2)(B - \lambda I) - (\log \lambda + i2\pi j_1)(B - \overline{\lambda}I)\right]$$

$$= \frac{i}{2b} \left[(\log \lambda - i2\pi j_2)(B - \overline{\lambda}I) - (\log \lambda + i2\pi j_1)(B - \overline{\lambda}I)\right]$$

where $j_1, j_2 \in Z$. This logarithm is real if the matrix in the bracket is pure imaginary, that is, if $j_1 = -j_2$. For example if we set $j_1 = j_2 = 0$, we have the principal logarithm $\text{Log} B$, namely

$$\text{Log} B = \frac{i}{2b} \left[(\log \lambda)(B - \overline{\lambda}I) - (\log \lambda)(B - \overline{\lambda}I)\right]$$

$$= \frac{i}{2b} 2i \text{Im} [(\log \lambda)(B - \overline{\lambda}I)]$$

$$= \frac{1}{b} \text{Im} [(\log \lambda)(B - \overline{\lambda}I)].$$

Hence

$$\text{Log} B = \frac{1}{b} \left[\begin{array}{cc}
b \log |\lambda| + (b_{11} - a) \text{Arg} \lambda & b_{12} \text{Arg} \lambda \\
b_{21} \text{Arg} \lambda & b \log |\lambda| + (b_{22} - a) \text{Arg} \lambda\end{array}\right], \quad (11)$$
where $a = \frac{1}{2}(b_{11} + b_{22})$ and $b = \frac{1}{2}\sqrt{-(b_{11} - b_{22})^2 - 4b_{12}b_{21}}$.
We summarize the previous steps in the following algorithm.

Algorithm special-real-logarithm (B, j_1)
(This algorithm computes a real logarithm of a real 2-by-2 matrix B.)

Input: A, j_1

$a = (b_{11} + b_{22})/2$;

$b = \sqrt{-((b_{11} - b_{22})^2 - 4b_{12}b_{21})}/2$;

$\theta = \frac{1}{2}\log(a^2 + b^2)$;

$\mu = \tan^{-1}(b/a)$;

$X = \theta I + \frac{1}{4}(\mu + 2\pi j_1)(B - aI)$.

Now we can give an algorithm to compute a real logarithm of a block upper triangular real matrix T. Assume that T defined by equation (8) such that T_{11}, \ldots , T_{rr} are 1-by-1 and $T_{r+1,r+1}, \ldots , T_{mm}$ are 2-by-2 matrices with complex conjugate eigenvalues. The following algorithm compute a real logarithm F of T.

Algorithm general-real-logarithm

Input: T

for $i = 1$ to r

$F_{ii} = \log(T_{ii})$

endfor

for $i = r + 1$ to m

$F_{ii} = \text{special-real-logarithm} \ (B, j_1)$

endfor

$SUM = 0$;

for $i = 1$ to m

for $j = 2$ to m

if $(j - 1 \geq i + 1)$ then

for $k = i + 1$ to $j - 1$

$SUM = SUM + T_{ik}F_{kj} - F_{ik}T_{kj}$

endfor

endif

Solve $F_{ij}T_{jj} - T_{ii}F_{ij} = T_{ij}F_{jj} - F_{ij}T_{ij} + SUM$.
(This system of equations can be solved by any standard method)

endfor

endfor.

Note that, if A is a real normal matrix then the above algorithm computes the real logarithms even if A has negative or repeated eigenvalues provided that the negative eigenvalues occur in pairs.
3.1 Real logarithm of real normal matrix

If $A \in \mathbb{R}^{n \times n}$ is a normal matrix and each of its negative eigenvalue occurs an even number of times, then Theorem 6 implies that there exists a real orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that

$$A = Q \text{diag}(D_1, \ldots, D_s, D_{s+1}, \ldots, D_p)Q^T,$$

where D_j is a positive number for $j = 1, \ldots, s$, and for $j = s+1, \ldots p$, D_j is a 2-by-2 matrix of the form

$$\begin{bmatrix} a_j & b_j \\ -b_j & a_j \end{bmatrix} \text{ or } \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$$

corresponding to a pair of complex conjugate eigenvalues $a_j + ib_j$ and $a_j - ib_j$, or to a pair of negative eigenvalues, that is, $\alpha < 0$. Then by using Lemma 1 we can find a real matrix X_j such that $e^{X_j} = D_j$ for all $j = 1, 2, \ldots, p$, and consequently

$$X = Q \text{diag}(X_1, X_2, \ldots, X_j)Q^T$$

is a real logarithm of A. If A has negative eigenvalues then there is no real logarithm of A which is a polynomial in A.

Example 9 Consider the normal matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$

with eigenvalues $6, -1.5 \pm 0.866i$. The real Schur decomposition of A is given by $A = QTQ^T = Q \text{diag}(D_1, D_2)Q^T$, where

$$Q = \begin{bmatrix} 0.5774 & 0.3004 & 0.7592 \\ 0.5774 & 0.5073 & -0.6397 \\ 0.5774 & -0.8077 & -0.1195 \end{bmatrix},$$

and

$$T = \begin{bmatrix} 6 & 0 & 0 \\ 0 & -1.5 & 0.866 \\ 0 & -0.866 & -1.5 \end{bmatrix}.$$

Then by using Lemma 1, there exists a real logarithm X of A of the form

$$X = Q \text{diag}(X_1, X_2)Q^T,$$

where $X_1 = 1.792$ and $X_2 = \begin{bmatrix} 0.549 & 2.618 \\ -2.618 & 0.549 \end{bmatrix}$. Consequently

$$X = \begin{bmatrix} 0.9634 & -1.0969 & 1.9258 \\ 1.9259 & 0.9634 & -1.0969 \\ -1.0970 & 1.9258 & 0.9634 \end{bmatrix}.$$
References

Received: September 12, 2007